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For u ∈ L2(Rd, dx), define a Dirichlet form (E ,F) as

E(u, v) :=

∫
Rd×Rd

(u(x)− u(y))(v(x)− v(y))J(x, y)dxdy

and
F = {f ∈ L2(Rd, dx) : E(f, f) <∞}.

Here J is a symmetric measurable function on Rd × Rd \ {x = y}.
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Symmetric Hunt process

Under some mild assumptions on J , the Dirichlet form (E ,F) is, in fact, a
regular Dirichlet form,
i.e., Cc(Rd) ∩ F is dense in F with the norm E(f, f) +

∫
Rd |f |

2dx and
Cc(Rd) ∩ F is dense in Cc(Rd) with the uniform norm.

Thus, by Fukushima (71) and Silverstein (74), there is a symmetric
(conservative) Hunt process X in Rd associated with (E ,F). Its
L2-infinitesimal generator Lf(x) is

Lu(x) = lim
ε↓0

∫
{|y−x|>ε}

(u(y)− u(x))J(x, y)dy.
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Jumping Kernel for Symmetric Hunt process

J(x, y) is called the jumping kernel for X because J(x, y) determines a Lévy
system of X, which describes the jumps of the process X.

Let τD := inf{t > 0 : Xt /∈ D} be the first exit time from D by X.

For A ⊂ Rd \D,

Px(XτD ∈ A) = Ex
∫ τD

0

∫
A

J(Xt, z)dzdt
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Heat Kernel estimates

Analytic point of view

p(t, x, y) is called the heat kernel for L if

u(t, x) :=

∫
Rd
p(t, x, y)f(y)dy.

is the solution to
Lu = ∂tu, u(0, x) = f(x).

Probabilistic point of view

p(t, x, y) is the transition density function of X. i.e.,

Px(Xt ∈ A) =

∫
A

p(t, x, y)dy.
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Thus obtaining sharp two-sided estimates for p(t, x, y) is a fundamental
problem in both analysis and probability theory.

Two-sided heat kernel estimates for diffusions in Rd have a long history and
many beautiful results have been established. Among the main contributors
are: D. G. Aronson, E. B. Davies, J. Nash.

Question

What is the general form of Heat kernel estimates for diffusions?

If p(t, x, y) is a heat kernel for uniformly elliptic differential operator, then
p(t, x, y) enjoys

Gaussian estimates

c1t
−d/2e−c2|x−y|

2/t ≤ p(t, x, y) ≤ c3t−d/2e−c4|x−y|
2/t.
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History on Heat Kernel estimate for discontinuous Markov
processes

While the heat kernel for diffusion process had been studied for more than a
century, the heat kernel estimates for the discontinuous Markov process X
(equivalently, for the non-local operator L) have only been studied since
around 2000.

After pioneering works by Kolokoltsov (00), Bass & Levin (02), Chen &
Kumagai (03), obtaining sharp two-sided estimates of heat kernels for various
classes of discontinuous Markov processes becomes one of the most active
topics in modern probability theory.
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History on HKE for discontinuous Markov processes

Chen & Kumagai (03, 08) : stalbe-like/mixed on metric measure space
Bogdan & Jakubowski (07) : ∆

α
2 +B · ∇

Song & Vondraček (07) : ∆
α
2 + ∆

Chen, K & Kumagai (08) : Finite range process
Chen & Kumagai (10) : Diffusion with jump
Sztonyk (10, 11) : Stable and tempered stable Lévy process
Chen, K & Kumagai (11) : J(x, y) � e−|x−y|

β

|x− y|−d−α

Grigor’yan, Hu & Lau (14), Grigor’yan, Hu & Hu (17. 18+) : Analytic
approach
Bogdan, Grzywny &Ryznar (14) : Unimodal Lévy prcoess
Sztonyk (13), Kateta & Sztonyk (13): derivatives Estimates
Chen-Zhang (16–18+), Chen,Hu,Xie & Zhang (17) , K, Song &
Vondraček (17), Kulczycki & Ryznar (17+), K & Lee (18+) :
Non-symmetric Process
Chen, Kumagai & Wang (16a,16b): Stability of Heat Kernel estimate
Murugan & Saloff-Coste (15, 18+): Long range random walks.
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Stable-like processes (Chen-Kumagai, 03)

For 0 < α < 2, define

J(x, y) = c(x, y)|x− y|−d−α

where c(x, y) is a symmetric function on Rd × Rd that is bounded between
two strictly positive constants, that is,

c−1 ≤ c(x, y) ≤ c for -a.e. x, y ∈ Rd.

The corresponding process is called a α-stable-like process on Rd.

Chen-Kumagai, 03

p(t, x, y) � t−d/α ∧ t

|x− y|d+α

for all x, y ∈ Rd and t > 0.
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Heavy Tail
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General form of HKE?

Question

What is the general form of Heat kernel estimates for pure-jump processes?

Suppose

c−1

|x− y|dΦ(|x− y|) ≤ J(x, y) ≤ c

|x− y|dΦ(|x− y|) , x, y ∈ Rd, (1.1)

where Φ is a non-decreasing function on [0,∞) satisfying

c1(R/r)α1 ≤ Φ(R)/Φ(r) ≤ c2(R/r)α2 , 0 < r < R <∞ (1.2)

with α1, α2 ∈ (0, 2).

Under the assumptions (1.1) and (1.2), p(t, x, y) enjoys the following
estimates.

Chen-Kumagai, 08

p(t, x, y) � Φ−1(t)−d ∧ tJ(x, y), x, y ∈ Rd, t > 0.
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Bogdan, Grzywny & Ryznar (14)

X is an isotropic unimodal pure-jump Lévy process in Rd, i.e., the Lévy
measure of X has a decreasing density J(r) and the characteristic exponent
of X is

ĝ(|ξ|) =

∫
Rd

(1− cos(ξ · y))J(|y|)dy.

Let g(r) = sup|x|≤r ĝ(|x|) and assume

c1(R/r)α1 ≤ g(R)/g(r) ≤ c2(R/r)α2 , 0 < r < R <∞

with α1, α2 ∈ (0, 2).

Bogdan, Grzywny & Ryznar (14)

Let Φ(r) = 1/g(r−1). Then

p(t, x) � Φ−1(t)−d ∧ t

|x|dΦ(|x|) and J(|x|) � 1

|x|dΦ(|x|)

for all x ∈ Rd and t > 0.
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Remark

p(t, x, y) � Φ−1(t)−d ∧ t

|x− y|dΦ(|x− y|) .

In both cases, we observe that the function Φ, which appears in the jumping
kernel estimates, is the scale function, i.e., |x− y| = Φ(t) provides the
borderline for p(t, x, y) to have either near-diagonal estimates Φ−1(t)−d or

off-diagonal estimates
t

|x− y|dΦ(|x− y|) � tJ(x, y).

Moreover, it is not difficult to show from the estimates that

c−1Φ(r) ≤ Ez[τB(z,r)] ≤ cΦ(r) for all z ∈ Rd, r > 0,

where τA is the first exit time from A for the process X.

Thus,

c−1

J(x, y)rd
≤ Ez[τB(z,r)] ≤

c

J(x, y)rd
, for all r > 0 and x, y, z ∈ Rd with |x−y| = r.
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Goal

We investigate the estimates of transition densities of pure-jump symmetric
Markov processes in Rd, whose jumping kernels with general mixed
polynomial growths, i.e.,

c−1

|x− y|dψ(|x− y|) ≤ J(x, y) ≤ c

|x− y|dψ(|x− y|) , x, y ∈ Rd,

and
c1(R/r)α1 ≤ ψ(R)/ψ(r) ≤ c2(R/r)α2 , 0 < r < R <∞

with α1, α2 ∈ (0,∞).

As a corollary of the main result, we have the global sharp two-sided
estimates when α1 is greater than 1.
ψ may not be the scale function for the heat kernel in general.
In our settings, we only have

Ez[τB(z,r)] �
c

J(x, y)rd
, for all r > 0 and x, y, z ∈ Rd with |x− y| = r.
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Subordinate Brownian motion

Let W = (Wt) be a Brownian motion in Rd and
S = (St) be an independent subordinator with Laplace exponent φ. i.e.,

Ee−λSt = e−tφ(λ).

Laplace exponent φ belongs to the class of Bernstein functions, i.e. φ is a
non-negative C∞(0,∞) function such that (−1)nφ(n) ≤ 0 for all n ∈ N.
Laplace exponent φ has a representation

φ(λ) = bλ+

∫ ∞
0

(1− e−λt)µ(dt),

where b ≥ 0 is called the drift, and µ(dt) is a measure satisfying∫∞
0

(1 ∧ t)µ(dt) <∞, which is called the Lévy measure of φ.
(Schilling, Song & Vondraček, Bernstein functions, 2nd ed., 2012)
The subordinate Brownian motion X = (Xt)t≥0 is defined by Xt = WSt .

The characteristic exponent of subordinate Brownian motion is
ψ(ξ) = φ(|ξ|2).
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Heat kernel estimates for Subordinate Brownian motion under
weak scaling condition on φ

Suppose φ is a Bernstein function satisfying the following weak scaling
condition: There exist a1, a2 > 0 and δ1, δ2 ∈ (0, 2) satisfying

a1λ
δ1/2φ(t) ≤ φ(λt) ≤ a2λ

δ2/2φ(t) , λ ≥ 1, t > 0 .

Let Φ(r) = 1/φ(r−2).
Recall that the Lévy density J(x) of the corresponding subordinate Brownian
motion has the following estimates:

J(x) � |x|−dφ(|x|−2) =
1

|x|dΦ(|x|) ,

and the transition density p(t, x) of the corresponding subordinate Brownian
motion has the following estimates:

p(t, x) � φ−1(t−1)d/2 ∧ t|x|−dφ(|x|−2) = Φ−1(t)−d ∧ t

|x|dΦ(|x|) .

(Chen & Kumgagai (08), K., Song & Vondraček(12), Bogdan, Grzywny &
Ryznar (14))
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Ryznar (14))

Kim, Panki (김판기) Heat kernel estimates for symmetric jump processes with general mixed polynomial growths



Introduction
Setup and Main results

Remarks on proofs
Examples

Symmetric Hunt processes
Stable-like processes
What is the general form of Heat kernel estimates ?
Subordinate Brownian motion

Heat kernel estimates for Subordinate Brownian motion under
weak scaling condition on φ

Suppose φ is a Bernstein function satisfying the following weak scaling
condition: There exist a1, a2 > 0 and δ1, δ2 ∈ (0, 2) satisfying

a1λ
δ1/2φ(t) ≤ φ(λt) ≤ a2λ

δ2/2φ(t) , λ ≥ 1, t > 0 .

Let Φ(r) = 1/φ(r−2).
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What is the general form of Heat kernel estimates ?
Subordinate Brownian motion

Brownian-like jump process (small jumps with high intensity):
Mimica(16)

Consider a Bernstein function

φ(λ) =
λ

log(1 + λβ/2)
, where β ∈ (0, 2).

Then φ varies regularly at∞ with index 1 (limt→∞ φ(tλ)/φ(t) = λ).

We have

H(λ) := φ(λ)− λφ′(λ) �

{
λ1−β/2 0 < λ < 2

λ
(log λ)2

λ ≥ 2 .

Thus
φ(λ)

H(λ)
� log(λ), λ ↓ ∞.

The function H(λ) = φ(λ)− λφ′(λ) appeared in Jain & Pruitt (87) to study
asymptotic properties of tail probabilities of subordinators.
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What is the general form of Heat kernel estimates ?
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HKE for Subordinate Brownian motion, Mimica(16)

H(λ) := φ(λ)− λφ′(λ)

Suppose that φ has no drift and that

a1λ
δ1/2H(t) ≤ H(λt) ≤ a2λ

δ2/2H(t) , λ ≥ 1, t > 0 ( or t > 1) ,

with δ1, δ2 ∈ (0, 4)

Then the transition density p(t, x) of X is comparable to
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|x|

t

φ−1(t−1)d/2 φ−1(t−1)d/2 exp(−a|x|2φ−1(t−1))

t|x|−d(φ(|x|−2)− |x|−2φ′(|x|−2))
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Symmetric Hunt processes
Stable-like processes
What is the general form of Heat kernel estimates ?
Subordinate Brownian motion

Return to Example: Brownian-like jump process (small jumps with
high intensity)

φ(λ) =
λ

log(1 + λβ/2)
, where β ∈ (0, 2).

φ−1(λ) �

{
λ

2
2−β 0 < λ < 2

λ log λ λ ≥ 2,
φ(λ)−λφ′(λ) �

{
λ1−β/2 0 < λ < 2

λ
(log λ)2

λ ≥ 2 .

If 0 < t < 1/2 and 0 < |x| < 1/2,

p(t, x) � t−d/2
(

log
1

t

)−d/2
∧

(
t

|x|d+2(log 1
|x| )

2
+ t−d/2

(
log

1

t

)−d/2
exp

(
−a |x|

2

t
log

1

t

))
,

where a = aL or a = aU depending whether we consider lower or upper
bound.
For t > 1/2 and |x| > 1/2 we get stable-like estimates

p(t, x) � t−d/(2−β) ∧ t

|x|d+2−β .
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Return to Example: Brownian-like jump process (small jumps with
high intensity)

φ(λ) =
λ

log(1 + λβ/2)
, where β ∈ (0, 2).

φ−1(λ) �

{
λ

2
2−β 0 < λ < 2

λ log λ λ ≥ 2,
φ(λ)−λφ′(λ) �

{
λ1−β/2 0 < λ < 2

λ
(log λ)2

λ ≥ 2 .

If 0 < t < 1/2 and 0 < |x| < 1/2,

p(t, x) � t−d/2
(

log
1

t

)−d/2
∧

(
t

|x|d+2(log 1
|x| )

2
+ t−d/2

(
log

1

t

)−d/2
exp

(
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t
log

1

t
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,
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Weak scaling condition

Let g : (0,∞)→ (0,∞), and a ∈ (0,∞], β1, β2 > 0, and 0 < CL ≤ 1 ≤ CU .

(1) For a ∈ (0,∞), we say that g satisfies La(β1, CL) (resp. La(β1, CL)) if

g(R)

g(r)
≥ CL

(
R

r

)β1
for all r ≤ R < a (resp. a ≤ r ≤ R).

We also say that g satisfies the weak lower scaling condition near 0

(resp. near∞) with index β1.
(2) We say that g satisfies Ua(β2, CU )(resp. Ua(β2, CU ) if

g(R)

g(r)
≤ CU

(
R

r

)β2
for all r ≤ R < a (resp. a ≤ r ≤ R).

We also say that g satisfies the weak upper scaling condition near
0(resp. near∞) with index β2.

(3) When g satisfies Ua(β,CU ) (resp. La(β,CU )) with a =∞, then we say
that g satisfies the global weak upper scaling condition U(β,CU ) (resp.
the global weak lower scaling condition L(β,CL).)
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Regular variation

For given function f : (0,∞)→ (0,∞), we say that f varies regularly at 0

(resp. at∞) with index δ0 ∈ [0,∞) if

lim
x→0

f(λx)

f(x)
= λδ0 (resp. lim

x→∞

f(λx)

f(x)
= λδ0)

for any λ > 0.

Note that if f is non-increasing and is regularly varying at 0 (resp. at∞) with
index δ0, then for any a > 0 and 0 < δ < δ0 < δ̄, there is CU , CL > 0 such that
f satisfies both Ua(δ̄, CU ) and La(δ, CL) (resp. Ua(δ̄, CU ) and La(δ, CL)).
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Throughout this talk, we will assume that β1, β2 > 0 and that
ψ : (0,∞)→ (0,∞) is a non-decreasing function satisfying L(β1, CL),
U(β2, CU ), and ∫ 1

0

s

ψ(s)
ds <∞. (2.1)

Let J : Rd × Rd \ {x = y} → [0,∞) be a symmetric function satisfying

C−1

|x− y|dψ(|x− y|) ≤ J(x, y) ≤ C

|x− y|dψ(|x− y|) , (x, y) ∈ Rd × Rd \ diag

(2.2)
for some C ≥ 1.

Note that (2.1) combined with (2.2) and L(β1, CL) on ψ is a natural
assumption to ensure that

sup
x∈Rd

∫
Rd

(
|x− y|2 ∧ 1

)
J(x, y)dy ≤ c

(∫ 1

0

sds

ψ(s)
+

∫ ∞
1

ds

sψ(s)

)
<∞. (2.3)
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Scale function

We define our scale function as

Φ(r) :=
r2

2
∫ r

0
s

ψ(s)
ds
.

Note that, if H(λ) := φ(λ)− λφ′(λ), then∫ r

0

sH(s−2)ds =
1

2

∫ ∞
r−2

H(t)

t2
dt = −1

2

∫ ∞
r−2

(
φ(t)

t
)′dt =

r2

2
φ(r−2).

In general, the function Φ is less than or equal to ψ. However, these functions
may not be comparable unless β2 < 2 where β2 is the index in the weak
upper scaling condition on ψ.
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Remarks on Φ and ψ

Φ(r) :=
r2

2
∫ r

0
s

ψ(s)
ds
.

If ψ satisfies La(β1, CL) and Ua(β2, CU ), then Φ satisfies La(β1, CL) and
Ua(β2 ∧ 2, CU ).

Suppose that ψ varies regularly at∞ with index δ0 ≥ 2. Then

lim
λ→∞

Φ(λ)

ψ(λ)
= 0,

and this implies that Φ varies regularly at∞ with index 2.
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Theorem 1.

There is a conservative Feller process X = (Xt,Px, x ∈ Rd, t ≥ 0)

associated with (E ,F) that starts every point in Rd. Moreover, X has a
continuous transition density function p(t, x, y) on (0,∞)× Rd × Rd, with the
following estimates: there exist aU , C > 0 such that

p(t, x, y)≤C
(
Φ−1(t)−d ∧

(
t

|x− y|dψ(|x− y|) + Φ−1(t)−d exp
(
−aU |x−y|

2

Φ−1(t)2

)))
and

p(t, x, y) ≥ C
(

Φ−1(t)−d ∧ t

|x− y|dψ(|x− y|)

)
.

In particular, if ψ(r) � Φ(r) for all large r > 1, then for t > 1

p(t, x, y) � ψ−1(t)−d ∧ t

|x− y|dψ(|x− y|) .

Kim, Panki (김판기) Heat kernel estimates for symmetric jump processes with general mixed polynomial growths



Introduction
Setup and Main results

Remarks on proofs
Examples

Weak scaling condition
Scale function
Main results
Khintchine-type law of iterated logarithm

p(t, x, y) ≤

|x− y|

t

Φ−1(t)−d Φ−1(t)−d exp

(
−aU |x− y|

2

Φ−1(t)2

)

t

|x− y|dψ(|x− y|)
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Corollary

Let
G(x, y) =

∫ ∞
0

p(t, x, y)dt

be the Green function for X.

Suppose that d > β2 ∧ 2 where β2 is the index in the weak upper scaling
condition U(β2, CU ) on ψ. Then there exists c ≥ 1 such that for any x, y ∈ Rd,

c−1Φ(|x− y|)|x− y|−d ≤ G(x, y) ≤ cΦ(|x− y|)|x− y|−d.

If d ≥ 3 and
∫∞

0
s

ψ(s)
ds <∞, then

c−1|x− y|−d+2 ≤ G(x, y) ≤ c|x− y|−d+2, |x− y| > 1.
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Theorem 2(1)

Let
K (s) := sup

b≤s

Φ(b)

b
.

Assume that Φ satisfies La(δ, C̃L) with δ > 1. Then for any T > 0, we have
that for every x, y ∈ Rd and t < T ,

p(t, x, y)�Φ−1(t)−d∧
(

t

|x− y|dψ(|x− y|)+Φ−1(t)−d exp

(
− c|x− y|

K −1(t/|x− y|)

))
.

(2.4)
Moreover, if a =∞, then (2.4) holds for all t <∞.

If ψ satisfies La(β1, CL), then Φ satisfies La(β1, CL).

Kim, Panki (김판기) Heat kernel estimates for symmetric jump processes with general mixed polynomial growths



Introduction
Setup and Main results

Remarks on proofs
Examples

Weak scaling condition
Scale function
Main results
Khintchine-type law of iterated logarithm

Theorem 2(1)

Let
K (s) := sup

b≤s

Φ(b)

b
.

Assume that Φ satisfies La(δ, C̃L) with δ > 1. Then for any T > 0, we have
that for every x, y ∈ Rd and t < T ,

p(t, x, y)�Φ−1(t)−d∧
(

t

|x− y|dψ(|x− y|)+Φ−1(t)−d exp

(
− c|x− y|

K −1(t/|x− y|)

))
.

(2.4)
Moreover, if a =∞, then (2.4) holds for all t <∞.

If ψ satisfies La(β1, CL), then Φ satisfies La(β1, CL).

Kim, Panki (김판기) Heat kernel estimates for symmetric jump processes with general mixed polynomial growths



Introduction
Setup and Main results

Remarks on proofs
Examples

Weak scaling condition
Scale function
Main results
Khintchine-type law of iterated logarithm

Theorem 2(1)

Let
K (s) := sup

b≤s

Φ(b)

b
.

Assume that Φ satisfies La(δ, C̃L) with δ > 1. Then for any T > 0, we have
that for every x, y ∈ Rd and t < T ,

p(t, x, y)�Φ−1(t)−d∧
(

t

|x− y|dψ(|x− y|)+Φ−1(t)−d exp

(
− c|x− y|

K −1(t/|x− y|)

))
.

(2.4)
Moreover, if a =∞, then (2.4) holds for all t <∞.

If ψ satisfies La(β1, CL), then Φ satisfies La(β1, CL).

Kim, Panki (김판기) Heat kernel estimates for symmetric jump processes with general mixed polynomial growths



Introduction
Setup and Main results

Remarks on proofs
Examples

Weak scaling condition
Scale function
Main results
Khintchine-type law of iterated logarithm

p(t, x, y) �

|x− y|

t < T

Φ−1(t)−d
Φ−1(t)−d exp−

(
− c|x− y|

K −1(t/|x− y|)

)

t

|x− y|dψ(|x− y|)
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Theorem 2(2)

Let

K∞(s) = K∞,a(s) :=

 sup
a≤b≤s

Φ(b)

b
if s ≥ a,

a−1Φ(a)s if 0 < s < a.

Note that K∞(s) � s for s > 1 if
∫∞

0
s

ψ(s)
ds <∞.

Assume that Φ satisfies La(δ, C̃L) with δ > 1. Then for every x, y ∈ Rd and
t ≥ T ,

p(t, x, y)�Φ−1(t)−d∧
(

t

|x− y|dψ(|x− y|)+Φ−1(t)−d exp

(
− c|x− y|

K −1
∞ (t/|x− y|)

))
.

Kim, Panki (김판기) Heat kernel estimates for symmetric jump processes with general mixed polynomial growths



Introduction
Setup and Main results

Remarks on proofs
Examples

Weak scaling condition
Scale function
Main results
Khintchine-type law of iterated logarithm

Theorem 2(2)

Let

K∞(s) = K∞,a(s) :=

 sup
a≤b≤s

Φ(b)

b
if s ≥ a,

a−1Φ(a)s if 0 < s < a.

Note that K∞(s) � s for s > 1 if
∫∞

0
s

ψ(s)
ds <∞.

Assume that Φ satisfies La(δ, C̃L) with δ > 1. Then for every x, y ∈ Rd and
t ≥ T ,

p(t, x, y)�Φ−1(t)−d∧
(

t

|x− y|dψ(|x− y|)+Φ−1(t)−d exp

(
− c|x− y|

K −1
∞ (t/|x− y|)

))
.
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p(t, x, y) �

|x− y|

t ≥ T

T

Φ−1(t)−d
Φ−1(t)−d exp−

(
− c|x− y|

K −1
∞ (t/|x− y|)

)

t

|x− y|dψ(|x− y|)
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Corollary: when r 7→ Φ(r−1/2)−1 is a Bernstein function

Assume that Φ satisfies La(δ, C̃L) some a > 0 and δ > 1, and
r 7→ Φ(r−1/2)−1 is a Bernstein function. Then, for any T > 0, there exist
positive constants c ≥ 1 and aU ≤ aL such that for all
(t, x, y) ∈ (0, T )× Rd × Rd,

c−1

(
Φ−1(t)−d ∧

(
t

|x− y|dψ(|x− y|) + Φ−1(t)−d exp
(
−aL |x−y|

2

Φ−1(t)2

)))
≤ p(t, x, y) ≤

c

(
Φ−1(t)−d ∧

(
t

|x− y|dψ(|x− y|) + Φ−1(t)−d exp
(
−aU |x−y|

2

Φ−1(t)2

)))
.

Moreover, if Φ satisfies L(δ, CL) with δ > 1, the estimates holds for all
t ∈ (0,∞).
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Finite second moment condition

These are all equivalent:

sup
x∈Rd

(
or inf

x∈Rd

)∫
Rd
J(x, y)|x− y|2dy <∞;

c−1r2 ≤ Φ(r) ≤ cr2, r > 1;

∫ ∞
0

sds

ψ(s)
<∞;

sup
x∈Rd

Ex[|Xt − x|2] <∞; for all t > 0;

and

inf
x∈Rd

Ex[|Xt − x|2] <∞ for some t > 0.

.
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Khintchine-type law of iterated logarithm

The finite second moment condition is equivalent to the Khintchine-type law
of iterated logarithm at the infinity.

(1) If
∫∞

0
sds
ψ(s)

<∞, then there exists a constant c ∈ (0,∞) such that for all
x ∈ Rd,

lim sup
t→∞

|Xt − x|
(t log log t)1/2

= c for Px − a.e.

(2) If
∫∞

0
sds
ψ(s)

=∞, then for all x ∈ Rd,

lim sup
t→∞

|Xt − x|
(t log log t)1/2

=∞ for Px − a.e.

Gnedenko proved this result for the Lévy process in 1943 (see also
Proposition 48.9 in Sato). The equivalence between the law of iterated
logarithm and the finite second moment condition for the non-Lévy process
has been a long standing open problem (see Shiozawa & Wang 2017 and
references therein for previous works).
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In Chen, Kumagai & Wang (2016a+), the authors considered heat kernel
estimates for mixed-type symmetric jump processes of on metric measure
spaces under a general volume doubling condition.

Using variants of cut-off Sobolev inequalities and the Faber-Krahn
inequalities, they established stability of heat kernel estimates. In particular,
they have established heat kernel estimates for α-stable-like processes even
with α ≥ 2 when the underlying spaces have walk dimensions larger than 2.

Note that Euclidean space has the walk dimension 2; thus, the results in
Chen, Kumagai & Wang (2016a+) does not cover our results.
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By contrast, results under the upper bound of Jumping kernels
(J(x, y) ≤ c|x− y|−dΦ(|x− y|)−1) in Chen, Kumagai & Wang (2016a+) and
Chen, Kumagai & Wang (2016b+), are applicable to our study.

There exists a constant C > 0 such that for any t > 0 and x, y ∈ Rd,

p(t, x, y) ≤ C
(

1

Φ−1(t)d
∧ t

Φ(|x− y|)|x− y|d

)
We show the above rough upper bound, which enable us to use several main
results in Chen, Kumagai & Wang (2016a+) and Chen, Kumagai & Wang
(2016b+) to show parabolic Harnack inequality and the near-diagonal lower
bound of p(t, x, y).
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Finite second moments
ψ is regularly varying with the index 2.

Finite second moments

If X has the finite second moments, then K∞(r) � r for r > 1.

Thus, for t > 1,

c−1
1

(
t−d/2 ∧

(
tJ(x, y) + t−d/2 exp

(
− c2 |x−y|

2

t

)))
≤ p(t, x, y) ≤ c1

(
t−d/2 ∧

(
tJ(x, y) + t−d/2 exp

(
− c3 |x−y|

2

t

)))
.
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Finite second moments
ψ is regularly varying with the index 2.

Suppose α > 1 and

ψ(λ) � λ2(log
1

λ
)α, 0 < λ < 1/2,

that is,

J(x, y) � 1

|x− y|d+2(log 1
|x−y| )

α
, |x− y| < 1/2.

Then, for t < 1/2 and |x− y| < 1/2,

p(t, x, y) � t−
d
2
(
log 1

t

) d(α−1)
2 ∧(

t

|x− y|d+2(log 1
|x−y| )

α
+ t−

d
2
(
log 1

t

) d(α−1)
2 exp

(
−a2

|x−y|2
t

(log 1
t
)α−1

))
.
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Finite second moments
ψ is regularly varying with the index 2.

Suppose α > 1 and

ψ(λ) � λ2(log
1

λ
)(log log

1

λ
)α, 0 < λ < 1/16.

that is,

J(x, y) � 1

|x− y|d+2(log 1
|x−y| )(log log 1

|x−y| )
α
, |x− y| < 1/16.

Then, for t < 1/16,

p(t, x, y) �t−d/2
(
log log 1

t

) d(α−1)
2 ∧

(
t

|x− y|d+2(log 1
|x−y| )(log log 1

|x−y| )
α

+ t−d/2
(
log log 1

t

) d(α−1)
2 exp

(
−a2|x−y|

2

t
(log log 1

t
)α−1

))
.
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Finite second moments
ψ is regularly varying with the index 2.

Suppose β ∈ R and that ψ(r) � r2(log r)β , r > 16, that is,

J(x, y) � 1

|x− y|d+2(log |x− y|)β , |x− y| > 16.

Then for t ≥ 16,

(i) β < 1;

p(t, x, y) � t−d/2(log t)−
d(1−β)

2

∧
(

t

|x− y|d+2(log(1 + |x− y|))β +t−d/2(log t)−
d(1−β)

2 exp
(
− a1|x−y|2

t(log t)1−β

))
,

(ii) β = 1;

p(t, x, y) � t−d/2(log log t)−d/2

∧
(

t

|x− y|d+2 log(1 + |x− y|) + t−d/2(log log t)−d/2 exp
(
−a2|x−y|

2

t log log t

))
,

(iii) β > 1;

p(t, x, y) � t−d/2 ∧
(

t

|x− y|d+2(log(1 + |x− y|))β + t−d/2 exp
(
−a3

|x−y|2
t

))
.
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Thank you!
.
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Main Lemma

Let f : R+ × R+ → R+ be a measurable function satisfying that t 7→ f(r, t) is
non-increasing for all r > 0 and that r 7→ f(r, t) is non-decreasing for all
t > 0. Fix T ∈ (0,∞]. Suppose that the following hold:

(i) For each b > 0, supt≤T f(bΦ−1(t), t) <∞ (resp.,
supt≥T f(bΦ−1(t), t) <∞);

(ii) there exist η ∈ (0, β1], a1 > 0 and c1 > 0 such that∫
B(x,r)c

p(t, x, y)dy ≤ c1
(
ψ−1(t)

r

)η
+ c1 exp

(
− a1f(r, t)

)
for all t ∈ (0, T ) (resp. t ∈ [T,∞)) and any r > 0, x ∈ Rd.

Then, there exist constants k, c0 > 0 such that

p(t, x, y) ≤ c0 t

|x− y|dψ(|x− y|) + c0 Φ−1(t)−d exp
(
− a1kf(|x− y|/(16k), t)

)
for all t ∈ (0, T ) (resp. t ∈ [T,∞)) and x, y ∈ Rd.
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There exist constants a1, C > 0 and N ∈ N such that

p(t, x, y) ≤ C t

|x− y|dψ(|x− y|) + C Φ−1(t)−d exp

(
−a1|x− y|1/N

Φ−1(t)1/N

)
,

for all t > 0 and x, y ∈ Rd.

There exist constants a1, C > 0 such that

p(t, x, y) ≤ C t

|x− y|dψ(|x− y|) + C Φ−1(t)−d exp

(
−a1|x− y|2

Φ−1(t)2

)
,

for all t > 0 and x, y ∈ Rd.
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Finite second moments
ψ is regularly varying with the index 2.

p(t, x, y) ≤

|x− y|

t

Φ−1(t)−d Φ−1(t)−d exp

(
−aU |x− y|

1/N

Φ−1(t)1/N

)

t

|x− y|dψ(|x− y|)
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Finite second moments
ψ is regularly varying with the index 2.

p(t, x, y) ≤

|x− y|

t
Φ−1(t) < |x− y| ≤ Φ−1(t)1+θ/ψ−1(t)θ

t
|x−y|dψ(|x−y|) + Φ−1(t)−d exp

(
−aU |x−y|

2

Φ−1(t)2

)

t

|x− y|dψ(|x− y|)
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Finite second moments
ψ is regularly varying with the index 2.

Recall our notations:

K (s) = sup
b≤s

Φ(b)

b
, Φ̃(t) = Φ(1)t21{0<t<1} + Φ(t)1{t≥1}, K∞(s) = sup

b≤s

Φ̃(b)

b
.

(1) Assume that Φ satisfies La(δ, C̃L) with δ > 1. Then for any T > 0, there
exist constants aU > 0 and c > 0 such that for every x, y ∈ Rd and t < T ,

p(t, x, y) ≤ c t

|x− y|dψ(|x− y|) + cΦ−1(t)−d exp

(
− aU |x− y|

K −1(t/|x− y|)

)
.

(4.1)
Moreover, if Φ satisfies L(δ, C̃L), then (4.1) holds for all t <∞.

(2) Assume that Φ satisfies L1(δ, C̃L) with δ > 1. Then for any T > 0, there
exist constants a′U > 0 and c′ > 0 such that for every x, y ∈ Rd and
t ≥ T ,

p(t, x, y) ≤ c′ t

|x− y|dψ(|x− y|) + c′ Φ−1(t)−d exp

(
− a′U |x− y|

K −1
∞ (t/|x− y|)

)
.
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t < T
Φ−1(t) < |x− y| ≤ Φ−1(t)1+θ/ψ−1(t)θ

t
|x−y|dψ(|x−y|) + Φ−1(t)−d exp−

(
− |x−y|

K −1(t/|x−y|)

)

t

|x− y|dψ(|x− y|)
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t
|x−y|dψ(|x−y|) + Φ−1(t)−d exp−

(
− |x−y|

K −1
∞ (t/|x−y|)

)

t

|x− y|dψ(|x− y|)
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ψ is regularly varying with the index 2.

Remarks on lower bound

Suppose Φ satisfies L(δ, C̃L) with δ > 1 and for some a > 0. Then there exist
C > 0 and aL > 0 such that for any t ≤ Φ(|x− y|)

p(t, x, y) ≥ CΦ−1(t)−d exp

(
−aL

|x− y|
K −1(t/|x− y|)

)
.

Proof. Recall K (s) = supb≤s
Φ(b)
b

. Let r = |x− y| and k =
⌈
3r/K −1( t

3r
)
⌉
.

By the definition of K and our choice of k,

Φ

(
3r

k

)
k

r
≤ 3K

(
3r

k

)
≤ t

r
.

Thus, we have r
k
≤ 1

3
Φ−1(t/k).
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Finite second moments
ψ is regularly varying with the index 2.

Remarks on lower bound

Let zl = x+ l
k

(y − x), l = 0, 1, · · · , k − 1. For ξl ∈ B(zl, 3
−1Φ−1( t

k
)) and

ξl−1 ∈ B(zl−1, 3
−1Φ−1( t

k
)),

|ξl − ξl−1| ≤ |ξl − zl|+ |zl − zl−1|+ |zl−1 − ξl−1| ≤ Φ−1(t/k). Thus by the
near diagonal lower bound, p( t

k
, ξl−1, ξl) ≥ c1Φ−1(t/k)−d. Using the

semigroup property, we get

p(t, x, y) ≥∫
B(zk−1,3

−1Φ−1(t/k))

· · ·
∫
B(z1,3−1Φ−1(t/k))

p( t
k
, x, ξ1) · · · p( t

k
, ξk−1, y)dξ1 · · · dξk−1

≥ ck1Φ−1(t/k)−dk
k−1∏
l=1

∣∣∣B(zl, 3
−1Φ−1(t/k))

∣∣∣
= c2c

k
3Φ−1(t/k)−dk

(
3−1Φ−1(t/k)

)d(k−1)

≥ c2(
c3
3d

)kΦ−1(t)−d ≥ c2Φ−1(t)−d exp (−(log c)k)

≥ c2Φ−1(t)−d exp

(
−c4

r

K −1(t/r)

)
.
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